1. Introduction
Conduction is a mode of heat transfer in which thermal energy is transferred from a region of higher temperature to a region of lower temperature without any macroscopic movement of the material as a whole. It occurs due to molecular interactions and the movement of free electrons, primarily in solids.
Conduction is the dominant mode of heat transfer in solids, less significant in liquids, and least effective in gases.
2. Physical Mechanism of Conduction
The mechanism of heat conduction depends on the state of matter:
a) In Solids
- Heat transfer occurs due to:
- Lattice vibrations (phonons) in non-metallic solids
- Free electrons in metallic solids
- Metals are good conductors because free electrons transport energy rapidly.
b) In Liquids
- Heat conduction occurs due to molecular collisions.
- Since molecules are loosely packed, conduction is weaker compared to solids.
c) In Gases
- Heat transfer occurs due to collisions between gas molecules.
- Large intermolecular spacing results in poor conduction.
3. Temperature Gradient
Heat conduction takes place only when there is a temperature gradient, i.e., change of temperature with distance.Temperature gradient=dxdTโ
- Heat always flows in the direction of negative temperature gradient
- Higher the gradient, higher the rate of heat transfer
4. Fourierโs Law of Heat Conduction
The fundamental law governing conduction was proposed by Joseph Fourier.
The rate of heat transfer by conduction is directly proportional to the area normal to the direction of heat flow and the temperature gradient.
Mathematically,
Where:
- Q = Rate of heat transfer (W)
- k = Thermal conductivity of the material (W/mยทK)
- A = Area perpendicular to heat flow (mยฒ)
- dxdTโ = Temperature gradient
- Negative sign indicates heat flows from high to low temperature
5. Thermal Conductivity (k)
Thermal conductivity is a material property that indicates its ability to conduct heat.
Characteristics
- Higher k โ Better conductor
- Lower k โ Better insulator
Typical Values
| Material | Thermal Conductivity (W/mยทK) |
|---|---|
| Copper | ~385 |
| Aluminum | ~205 |
| Steel | ~45 |
| Brick | ~0.6 |
| Glass Wool | ~0.04 |
6. One-Dimensional Steady-State Conduction
In many engineering problems, heat flow is assumed to be:
- One-dimensional
- Steady-state (temperature does not change with time)
- No internal heat generation
For a plane wall of thickness L:
Where:
- T1โ and T2โ are surface temperatures
7. Thermal Resistance Concept
Conduction heat transfer can be analyzed using the thermal resistance analogy, similar to electrical resistance.
This concept is useful in analyzing composite walls and multi-layer insulation systems.
8. Conduction Through Different Geometries
a) Plane Wall
b) Hollow Cylinder
c) Hollow Sphere
9. Factors Affecting Heat Conduction
- Temperature difference
- Thermal conductivity of material
- Cross-sectional area
- Length or thickness of the material
- Nature and structure of the material
10. Engineering Applications of Conduction
- Heat flow through boiler walls and furnace linings
- Design of insulation materials
- Heat transfer in engine components
- Cooling of electrical and electronic devices
- Heat loss calculation in buildings and pipelines
11. Advantages and Limitations
Advantages
- Predictable and mathematically well-defined
- Essential for solid material heat analysis
Limitations
- Slow compared to convection and radiation
- Ineffective in gases without convection